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Characterizing Dose-Response I: Critical Assessment of the
Benchmark Dose Concept

James A. Murrell,1 Christopher J. Portier,2 and Richard W. Morris1

We present a critical assessment of the benchmark dose (BMD) method introduced by Crump(1)

as an alternative method for setting a characteristic dose level for toxicant risk assessment. The
no-observed-adverse-effect-level (NOAEL) method has been criticized because it does not use all
of the data and because the characteristic dose level obtained depends on the dose levels and the
statistical precision (sample sizes) of the study design. Defining the BMD in terms of a confidence
bound on a point estimate results in a characteristic dose that also varies with the statistical pre-
cision and still depends on the study dose levels.'2' Indiscriminate choice of benchmark response
level may result in a BMD that reflects little about the dose-response behavior available from
using all of the data. Another concern is-that the definition of the BMD'for the quantal response
case is different for the continuous response case. Specifically, defining the BMD for continuous
data using a ratio of increased effect divided by the background response results in an arbitrary
dependence on the natural backgiound for the endpoint being studied, making comparison among
endpoints less meaningful and standards more arbitrary. We define a modified benchmark dose as
a point estimate using the ratio of increased effect divided by the full adverse response range which
enables consistent placement of the benchmark response level and provides a BMD with a more
consistent relationship to the dose-response curve shape.
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1. INTRODUCTION

There has been considerable recent interest in meth-
odologies for determining a characteristic dose level to
be used in risk assessment for toxicants. Criticisms on
statistical grounds of the traditional no-observed-ad-
verse-effect-level/lowest-observed-adverse-effect level
(NOAEL/LOAEL) approach to standard setting are in-
creasingly acknowledged by biologists and there has
been active debate over methods to improve upon it.
While mechanistically-based mathematical modeling has
received considerable attention, these techniques need
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more development before they can be routinely used.
Instead, simpler statistical and mathematical models
which relate exposure to effect have greater appeal as a
means to provide an immediate, generally applicable al-
ternative to a NOAEL/LOAEL approach. To develop an
alternative to a NOAEL/LOAEL approach by such
means, a method must be determined for using a model
to compute an exposure level (toxicant dose) that char-
acterizes risk. We call this exposure level the character-
istic dose. In the current risk characterization practices,
the characteristic dose (currently provided by the
NOAEL/LOAEL) is combined with uncertainty factors
and other factors to assure that the exposure standard
used for regulatory purposes provides adequate safety to
exposed human populations. These other factors are not
addressed here. The focus of this paper is on the deter-
mination of the characteristic dose.
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Perhaps the first method for specifying a character-
istic dose from a model was proposed by the U.S. In-
teragency Regulatory Liaison Group (IRLG).(J) This
group proposed that cancer risks should be determined
by fitting any appropriate dose-response model to cancer
bioassay data to estimate risks over the entire range of
expc—re, then usi-ig a lin";j ix; elation of risk be-
tween a prespecified v^per toun ,' excess risk on the
model curve to the zero excess riss point. The idea was
to take info account the well-documented uncertainty in
the low-dose behavior of these fitted curves/4' Excess
risk for a specified low exposure dose could be calcu-
lated from this linear function. Others have proposed
modifications to this method and have studied the be-
havior of this procedure in setting exposure standards/3-*'
One version of this method is currently proposed by the
U.S. EPA for agents whose "mode-of-action" suggest
linear risks at low exposure doses.<7) Recently, Gastel
and Sutter*8' have attempted to specify a characteristic
dose in terms of points on nonlinear dose-response
curves.

The most notable of the alternatives is the bench-
mark dose (BMD) suggested by Crump0-*5 for noncancer
risk assessment. The BMD is defined as the lower 95%
confidence bound on dose which results in some pres-
pecified lex'el of excess risk. Recently, the benchmark
dose methodology has received considerable attention.
Various organizations and regulatory agencies in the
U.S. and abroad have considered adoption of its use,
including the U.S. EPA/10' The benchmark dose meth-
odology is being considered in the international arena as
part of the efforts to develop a standard approach.0"

In this paper, we examine the BMD approach from
the perspective of its proposed advantages relative to the
LOAEL/NOAEL approach. Specifically, we address the
issues of using a model in establishing a characteristic
dose, defining the characteristic dose as a lower confi-
dence bound rather than a point estimate, and the effects
of using the background response in defining excess risk
or effect. To overcome shortcomings identified with the
current BMD procedure, we propose a benchmark dose
which is a point estimate and is based on extra effect,
in which a change in effect over background is normal-
ized by the range from background to maximum possible
response, rather than normalized by the background re-
sponse. Defined in terms of extra effect, the benchmark
response can then be specified in a way such that the
characteristic dose consistently characterizes the dose-
response behavior described by the fitted model. Anal-
ysis given in support of the arguments uses data on non-
cancer endpoints of 2,3,7,8-tetracMorodibenzo-p-dioxin
(TCDD) available in the literature/12'

2. REVIEW OF THE BENCHMARK DOSE
CONCEPT

2.1. Definitions and Notation

Cn«mp define V benc^ nark dose to be the 95%
lower confid- ^ « . . . on a dose correspon^ng to a
fixed percent increase (relative change) in an adverse
effect over the background level/1-9' In this paper, we
distinguish between a point estimate (PE) and a lower
confidence bound (LCB) estimate of the benchmark dose
(BMD).

The data from which benchmark dose statistics are
computed derive from an experiment in which k + 1
groups of test animals are exposed to a specific dose
level (</<> = 0, £?„..., 4) of a chemical agent (toxicant),
including a zero additional 'dose level as a control. Ad-
verse effects are quantified for each animal in each dose
group; we will refer to the measured adverse effect on
animal j in dose group i as y~, i = 0,..., k; j = 1,
...,«;. In order to estimate a BMD, one must specify
a model relating the dose level to the average effect level
for that dose group. Define FB(d) to be the model that
describes the average adverse effect level in animals ex-
posed to a dose d, where the model depends on a set of
parameters 6. In order to use the model for estimating
the BMD, the parameters in 0 must be estimated from
the data (using an appropriate method such as least
squares or maximum likelihood estimation). The param-
eter estimates are denoted by 8 and the estimated model
is denoted by F-9(d},

Crump(" originally defined the BMD approach for
experimental responses which are naturally expressed as
proportions (e.g., proportion surviving, proportion of
dams with offspring having terat, proportion of fetuses
resorbed, etc.). In this case, the estimated model F-e(d)
is used to compute a proportion P(d) which, is a number
between 0 and 1 representing the risk for exposure level
d. (Usually, the model F&d) is defined so that P(d) =
Fy(d).) Mathematically, the BMD PE is defined as the
dose, df, which satisfies the equationion

P ~
P(d,)-P(0)

I - P(Q) (D

where P(Q) is the response of the control group and p
(the benchmark response) is a specified level of risk. The
value p, referred to as the benchmark response (BMR),
is typically chosen at 0.01, 0.05, and 0.10 (1%, 5%, and
10%). The method presumes that the risk being studied
can be specified as a probability ranging between P(0)
and 1.
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The benchmark dose is then usually denned in the
literature as the lower confidence bound estimated for
this point estimate. The benchmark dose has been ex-
tended to experiment endpoints which are not quantal,
i.e., not described in terms of proportions.1" These end-
points are referred to in the literature as being described
by continuous data. There have been several ways sug-
gested for defining a benchmark dose in a manner sim-
ilar to that in Eq. (1) for continuous data. The use of the
benchmark dose concept for continuous data is discussed
in more detail in Sect. 3, where we examine some of the
properties of'the benchmark dose as currently defined in
the literature.

2.2. Findings on the Application of BMD for
Studies in the Literature

That the BMD methodology is a significant contri-
bution to risk assessment and worthy of serious consid-
eration is supported by many authors in the literature.
Kimmel(U) presented a discussion of several alternatives
to the NOAEL approach, including BMD, for risk as-
sessment of reproductive hazards. Foster et a/.(U) discuss
the adoption of the BMD method and the issues con-
cerning its use in developmental toxicity studies and
concluded that the method offers significant advantages.
Several studies(15-"> have been reported which evaluate
and compare the benchmark dose method to the NOAEL
approach. In general, the BMD method has given similar
results to NOAEL/LOAEL. However, there were in-
stances of markedly different results in which sometimes
one, sometimes the other method yielded a larger ref-
erence dose. Also, several researchers qualified their
conclusions with a call for more evaluation and exami-
nation of the method.<"'21-26>

Of particular note is the review by Auton,<27) who
applied the BMD method to an extensive historical da-
tabase of teratology bioassays. It was found that the 5% .
BMD was comparable to the NOAEL for most datasets,
but the 1% effective dose had large confidence intervals
and hence the BMD (defined as the lower bound on the
effective dose) could not be estimated accurately. It was
also found that, occasionally, the BMD is higher than
the highest dose tested in the study; this occurred "...
when the chemical causes a small, but significant, in-
crease in a finding that is uncommon in untreated ani-
mals."

These studies raise several important issues con-
cerning the BMD method, e.g., instances of significant
disagreement between the methods, large or incalculable
confidence bounds, and applicability to a variety of end-

points (especially continuous data endpoints). In the next
section, these and related issues are examined in detail.

3. CRITICAL ASSESSMENT OF BENCHMARK
DOSE

3.1. Use of a Model in Computing Benchmark Dose

Computation of the benchmark dose requires the
fitting of a model to the data so that a smooth inverse
function is available to find the dose corresponding to a
specified effect. We do not consider it a minor attribute
of the benchmark dose method that dose-response data
is fitted to a model in the benchmark dose approach. Nor
do most of the authors that we have reviewed in the
literature. This feature is always stated prominently and
figures importantly in all discussions about the advo-
cated advantages of the benchmark dose approach.
Therefore, it is of great importance that this presumed
advantage of using a fitted model be critically examined.

By fitting a. model, the benchmark dose approach
attempts to use all of the data (which contain the infor-
mation about the dose-response relationship) and is not
restricted to consideration of only the dose levels for
which effects were measured in the study. This is a good
feature, for it allows the determination of a statistic rep-
resenting the character of the dose-response relationship
(and thus of the potency of the toxicant). Of course, for
any method using fitted models, it is important that the
number and distribution of the dose levels is sufficient
to yield a good estimate of the model parameters. The
issue here is that the manner in which the BMD is spec-
ified can impact the degree to which "all of the data"
are actually used in determining the characteristic dose.

The choice of the benchmark response (BMR)
specified for the benchmark dose affects the dose region
where the model is called on to make a prediction of
response. It has been argued that the BMR should be
"... set at the lower end of the range of response that
can be detected experimentally, in order to avoid uncer-
tainties associated with low-dose extrapolation using
models that may not reflect biological realities,"19' and
yet "... large enough so that the BMD is relatively
insensitive to the choice of the model."B1>

However, if the BMR is-chosen so that the BMD
is insensitive to the choice of the model, then curvature
in the data has little effect and thus the advantage of
really capturing information about the character of the
dose-response behavior is not realized. To see this, con-
sider this simple illustration using a dose-response curve
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Fig. 1. A simple illustration of why choosing BMR in a linear range
of response fails to take advantage of alt the infonnation available
from model using all the data for the point estimate of benchmark
dose.

fitted to some typical data points, shown in Fig. 1 on a
log dose scale. Suppose the BMRp is chosen to He well
within the range of observed excess risks on a locally
linear portion of the curve. Then there exists an exper-
imental dose level for which the excess risk is below p
and one for which the excess risk is above p. Interpo-
lation via a straight line between these two points to find
the exposure which yields the excess risk ofp will yield
a corresponding dose which, on average, is approxi-
mately equal to that obtained from other models fit to
the same data, even nonlinear models. Hence, if p is
chosen to lie so far into the range of the observed re-
sponse that the' curve is locally linear, then the projection
of the BMR to a dose (via the model) relies almost en-
tirely on the response at the nearest two dose levels.
(This can happen frequently when p is chosen as large
as 10%.) The other points are used by .the fitting process
to help reduce the variability in the benchmark dose sta-
tistic from noisy data, but the other points contribute
virtually no infonnation about the dose-response behav-
ior anywhere else on the curve. That is, locating the
BMD on a straight part of the curve does not provide
much infonnation about the overall dose-response re-
lationship, and hence fails to use effectively all of the
observed data in determining the BMD.

Therefore, one cannot argue that there is the ad-
vantage of using all the data, and then argue that finding
a characteristic dose statistic in a linear region is best.
Though it may appeal to some researchers to have a dose
statistic that does not depend much on the model, we
argue that the value in using a model derives from its
capability to capture information about the dose-re-

sponse behavior that arises from the biological mecha-
nisms. Hence, the information carried by the model
should matter, even in the case where we must resort to
using merely an empirical model in the absence of an
accepted mechanistic model.

A benchmark dose should be a characteristic dose
stathti.; th;t characterize'- Ifco dose—response rela ,-. ;h;p
by ir.ukating a point on the curve where something in-
teresting happens, e.g., a dramatic change in slope sig-
nifies, something about the biological mechanism. The
point here is that these changes can only be captured by
an accurate nonlinear model, and by a choice ofp such
that nonlinearity affects the determination of the char-
acteristic dose.

3.2. Use of the Lower Confidence Bound

A frequently cited advantage of the benchmark
dose method is that defining it as a lower limit of a
confidence interval provides industry with an incentive
for performing larger studies with better sampling by
rewarding it with the resulting larger benchmark dose
levels/1-9-20' While it is clear that there is a problem with
the NOAEULOAEL approach in that the way it is used
in risk assessment encourages smaller studies, there are
inherent problems in defining a critical statistic of any
sort in terms of an estimate of variance rather than of
the mean. There are many advantages to the benchmark
type of approach over the NOAEL rpproich, but BMD
should not be defined in terms of a confidence limit, fhe
size of the study should not bias a characteristic dose
str, fistic in either direction. While intelligent risk assess-
ment must be informed by the variability and uncertainty
inherent in a measure, it must first have the best estimate
of that measure. Once a point estimate has been found,
then confidence bounds or variance estimates can be cal-
culated and used m any of a number of various proce-
dures in risk assessment to account for that uncertainty
in standard setting (e.g., uncertainty factors, Monte Carlo
simulations, fuzzy networks, etc.).

One argument that has been made is that the mod-
eling performed as part of the benchmark dose approach,
"... is not intended to provide estimates of risk levels
of exposure far below the experimental dose range.
Rather, the models are proposed as a means of estimat-
ing a statistical lower bound on dose associated with a
predefined level of risk, that level of risk typically being
in the range of 1 to 10%."<M) Attempting to deflect the
charge that an empirical model is being used to make a
prediction below the experimental dose region by def-
erring to the confidence limit is not convincing, because
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Table I. 10% Extra Effect BMD Point Estimates and 95% Confidenoe Limits for Noncancer Endpoints of TCDD Exposure"

Study description

Kitchin and Woods, 1979<31>
female S-D rats

Abraham et al, 1988'"'
female Wistar rats

Narasimhan et at., 1994<">
female B6C3F1 mice

Davis and Safe 1988<M>
C57BL/6N mice

Mablyefa/., 1992<»>
preg. female, male offspring,
Holtman S-D rats

DeVito et at., 1992(M>
female B6C3F1 mice

VanBirgelen et al., 1995<">
female S-D rats

VanBirgelen et al. 1995««>
female S-D rats

Maronpot et al., 1993<M>

female S-D rats

Dose
regime*

Single, 3 days
0.6 ng/kg
Single, 7 days
1 ng/kg
Single, 24 hr
5 ng/kg
S, 4 days
S, 4 days
322 ng/kg
S, 64 ng/kg

SX/wk
13 wk
daily
13 wk

daily
13 wk
1X/2 wk
30 wk

Endpoint

Liver Cytochrome P-450 (total)
Liver Benzopyrene Hydroxalase (CYP1A1 Activity)
Liver Cytochrome P-450 (total)
Liver EROD (CYP1A1 Activity)
Liver EROD (CYP1A1 Activity)
Liver CYP1A2 (mRNA)
Spleen PFC/106 cells
Spleen PFC/106 cells

Sperm morph. — day 120
Fertility index
Cauda sperm count day 63
Cauda sperm count — day 120
Cauda sperm count/g — day 120
DSP/g— day 49
DSP/g— day 63
DSP/g— day 120
liver EROD-
liver CyplA2
EROD
4OH-AA
hepatic retinol
hepatic retinyl-palmitate
plasma retinol
plasma TT4
plasma FT4
liver T4UGT

Alk. Phos. (DEN)
Alk. Phos. (SAL)
S. DeH. PEN)

10%
extra
effect

68.72
77.33
86.77

157.27
645.77
391.23
29.08

359.95

145.6
360.5

4.27
6.83

10.10
0.87

.10.14
21.41

1.08
0.10
7.31
6.86
0.28

236.90
27.56

317.17
51.96
19.55

21.86
33.31
0.89

Lower
conf.

bound

0.66
54.40

. 29.37
108.48

0.00
0.00
0.14

39.51

0.00
360.50

0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.49

0.22
0.00
0.00

Upper
conf.
bound

1337.79
125.09
227.50
244.73

13925.60
9961.63

91.45
1121.34'

3557.47'
360.50
127.51'
150.50
62.31'

4157.06'
560.35'

1451.92'
3.98
4.11

38.17
52.66
4.49

3914.08
765.59*

291034'
1037.07'
518.57

120.40'
74.20

133.24

• Doses are in equivalent ng/kg body wt./day (multiple doses).
* Dose regime: period of dose administration, length of time until sacrifice.
'Limited by domain of search (15 times the model parameters for the MLE pt. estimate).

the confidence limit is itself an estimate which also de-
pends on the model and is subject to all of the same
assumptions and uncertainty. If the point estimate cannot
be trusted outside the data range or because of a poor
.model fit, then its confidence bound has little meaning
or relevance either.

Moreover, estimating the confidence limit (which is
based on the estimated variance) is an impractical ex-
ercise for many real datasets. Table I displays results for
several studies of point estimates of benchmark dose
(units of micrograrns/kg) from fitting a Hill equation
model along with the confidence intervals (see Appendix
for calculation methods). From these it is evident that
the limits of the BMD often differ from the point esti-
mate by more than 100% (sometimes by several orders
of magnitude), and that often the lower limits are driven

to zero. The Hill equation model is the most appropriate
for data of this type, however, similar models that ade-
quately capture the curve in the data (e.g., power law
and a modified Weibull) yield similarly large gaps be-
tween point estimates and confidence bounds (results not
shown).

The basic problem stems from the small sample
sizes and small number of dose levels typical of most
studies, combined with the nonlinearity of the model.
The small samples for each dose group can inflate the
estimated population variance and the small number of
dose groups combined with noisy group means can lead
to poor model fits (and therefore large stuns of squared
errors). Thus, in practice, it is not desirable to define a
benchmark dose mat depends on the estimated variance,
such as the lower limit of a confidence interval on a
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point estimate. In contrast, the point estimate itself de-
pends more on the estimated dose-response shape, and
less on the arbitrary qualities of the study.

In the case of studies with small group sample sizes
and few dose groups, the NOAEL/LOAEL method typ-
ically results in exceedingly high reference doses and
associated high risk. Interestingly, it is in this very case
that the BMD LCB gives an unacceptably small dose
(i.e., zero). In a well-designed study, the NOAEL would
be very close to zero for typical dose-response curves,
since a statistically significant effect would register for
very low doses when there are good sampling statistics.
The point here is that for both the NOAEL and the ex-
isting BMD method, the resulting risk is a nearly arbi-
trary reflection of the variance of the study, rather than
the measured dose-response curve. When the sample
variance is large, the NOAELs become larger and BMD
lower confidence bounds become smaller, but both can
distort the information conveyed about dose-response.
In general, using the BMD PE could give a higher risk
or a lower risk than that provided by a NOAEL, de-
pending on the precision of the study, but the point is
that it would be a more accurate result in terms of rep-
resenting the dose-response behavior, rather than just
the sampling statistics.

It is important to account for statistical uncertainty,
as some have argued who advocate using the LCB as
the BMD statistic. Standard statistical practice supports
reporting both the PE and the LCB, not just the lower
confidence bound. We recommend that laboratory sci-
entists and statisticians provide both the point estimate
and the confUen< c ' ounda; these are then available to
the risk manager who uses a rational method for taking
into account the uncertainty of the measurement. While
the results from Table I certainly point to the need for
better resolution studies in the future (i.e., larger sam-
ples), the database of studies already available which
must be used for standard-setting would too often result
in setting a standard at zero when the LCB alone is used,
which is clearly unacceptable. Moreover, setting stan-
dards based on a number that reflects more about the
quality of the study than it does about dose-response
seems to us to be poor practice.

3.3. Standardizing the Change in Response from
Background

The benchmark dose approach involves specifying
the benchmark change in effect level (BMR), for ex-
ample 1%, 5%, or 10% change in adverse effect or risk.
In the case of quantal data models where the response

represents a probability of incidence of an endpoint
event (such as a particular type of tumor), it can be ar-
gued that the change in the response is a change in risk.
The current definitions of BMR for continuous data do
not generally represent measures of risk, but measure a
numerical change in some biological quantity impacted
by chemical exposure (see discussion in Kodell et a/.).«*>

The benchmark dose is generally defined in terms
of a specified change in the response from the back-
ground level. For quanta! data, this change has the nat-
ural metric of a probability on a scale from 0 to 1, The
difference between the probability of incidence of the
endpoint at the benchmark dose and the probability for
the background is already on a standardized scale. For
continuous data, the importance of a change in response
depends on the nature of the quantity being measured to
provide some sense of the scale of the measurements.
The scale is-not simply a matter of units (which can be
easily normalized), but of how much change in effect is
really significant to public health. This differs for each
quantity or endpoint measured, and can vary from study
to study depending upon procedures and measurement
sensitivities, species, sex, and other study design attrib-
utes. In order to obtain a statistic that conveys primarily .
information about the potency of the toxicant and not
the particulars of the study, there must be some kind of
standardization of the variation in the scale.

A variety of methods have been suggested to at-
tempt to standardize the change from background level.
The most commonly used method specifies the change
in effect rclativs to the background response level. This
relative effect is given by

Ft (d) - Ft (0)
-* relative (2)

where Ft(d) is the function relating the response to the
dose d. The problem with relative effect is that it is
highly sensitive to the level of the background response
(i.e., a small effect on a small background would look
more important than a similar effect on a large back-
ground). Since, the natural background response level
depends arbitrarily on the particular quantity being mea-
sured, the sensitivity to change in response should have
nothing to do with how much response there already is
at the "background" level of dose. For example, the
normal weight of an organ may be large or small de-
pending on which organ, but a 30% change from the
normal weight for one organ may be more significant to
the health of the organism than a 30% change in another.
Hence, E^,^ cannot, in general, provide a standardi-
zation that permits meaningful comparisons.
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Using background response as a normalization does
not result in a standardized risk level for hazard ranking
and risk comparisons among toxicants, among endpoints
of the same toxicant, or even among studies on the same
endpoint and the same toxicant. Normalizing effect dif-
ference by background can also be problematic if any
responses are less than that of the control group for in-
creasing response functions, or greater than that of the
control group for decreasing functions, or if the back-
ground response level is zero.

There have been various other suggestions for stan-
dardizing the change in effect. For example, it has been
suggested that the change in effect be divided by the
standard deviation of the control group, or the standard
deviation of an assumed distribution of the mean effect
for particular dose levels."-2" While this method may
provide a form of standardization for comparing very
similar sets of data, this, also does not truly standardize
the change in effect, because the particular quantity mea-
sured may also vary in an arbitrary way according to the
natural dispersion for that quantity. Since the standard
deviation of the background can vary from endpoint and
study to study in ways not related to the health impor-
tance of the effect, this method also does not standardize
across a variety of .endpoints and experimental condi-
tions.

Various methods have been proposed to convert
continuous data scales into the probabilistic scale by de-
fining a cutoff response level or proportion of responses
that separates a normal or no-effect region from an ab-
normal or rse effect region and tb-n quantizing the
response.' •*• • Many assumptions are involved in the de-
termination of the cut-off level and the mean response
distributions. Due to the possible differences between
endpoints in terms of the behavior with respect to these
assumptions (as well as the uncertainty in the assump-
tions themselves), standardization of the type desired
here cannot be achieved in this way.

Here it is proposed that a continuous quantity mea-
surement should be scaled by the range from background
response level to maximum response level (for increas-
ing response functions). It is a biological reality that
whatever the mechanism of the effect of the toxicant,
there is some dose level beyond which no further change
in response is seen, or is theoretically feasible. In gen-
eral, there is some type of limitation or saturation phe-
nomenon which occurs at high enough doses. Thus, in
analogy to the case of quantal data for which there is a
probability metric where the response reaches a maxi-
mum at one, the extra effect can be defined as the change
in effect from background standardized by the total
range of response, given by

(3)

where F^is the maximum response level (the response
level at saturation), i.e.,

lim
(<0 (4)

Note that the total response range is not necessarily
the response range of the observed responses in a study;
rather, it is defined by a determination of the minimum
and maximum possible responses according to, for ex-
ample, a model equation fitted to the data. This formula
is applicable to the case of quantal data, in which case
"̂max = 1- The models which are frequently used for

continuous, nonquantal data sets (e.g., Michaelis-Menten
and Hill equation) provide an estimate of Fm« through
the estimated parameters. For most of the nonquantal
datasets in the historical' database available for review,
whenever the study included five or more dose levels",
points in the experimental range did fall near Fmav

Dividing the change in effect by the total range of
possible effects results in a quantity that is completely
standardized with respect to scale. It is still arguable that
the mechanism of saturation or limitation may be so dif-
ferent with different endpoints that comparison on the
basis of this standardization may not be meaningful ei-
ther. However, it is likely that a large variety of end-
points for a particular toxicant have similar limiting
mechanisms, and in any case, the scale is defined in
terms of the limiting possible adverse effect. The stan-
dardization thus afforded does effectively put all the
endpoints on the same basis in much the same way as
is done with quantal data on a probability scale (where
the limiting possible health effect is occurrence of the
effect with probability one). Scaling a response change
by the total response range gauges the significance of
the response change.

In Table II, the 10% relative effect BMD PE and
its corresponding extra effect are shown for continuous
data obtained from TCDD noncancer endpoint studies
reported in the literature (see Appendix for description
of analysis methods). Note that the percent extra effect
that is actually obtained with a nominal 10% relative
effect actually varies considerably with the endpoint (see
also Fig. 2). The variation depends on the variation in
the background response level "with endpoint. If the end-
point happens to have a small background level, then
the true size of the 10% relative effect is highly inflated.
If the background happens to be large, the 10% relative
effect is on a very insensitive scale.



20 Murrell, Portier, and Morris

Table IL 10% Relative Effect BMD Point Estimates and Corresponding Extra Effect Level: Noncancer Endpoints of TCDD Exposure (Doses
Are in ng/kg Body wt. or ng/kg Body wt/day for Multiple Dose Regimes)*

Study description

Kitchin and Woods, 1979°"
female S-D rats

Abraham et at., 1988<w
female Wistar rats

Narasimhan et al. 1994<»>
female B6C3FI mice

DeVito et al., 1992<">
female B6C3F1 mice

VanBirgelen et al., 1995<™
female S-D rats

VanBirgelen et at., I995°n

female S-D rats

Dose regime*

Single, 3 days

Single, 7 days

Single, 1 day

5X/wk
13 wfc
daily
13 wk

daily
13 wk

Endpoint

liver cytochrome P-450
liver benzopyrene hydroxalase
liver cytochrome P-450
liver EROD
liver EROD
liver Cy?!A!
liver CypJA2
Totai Ah receptor binding
liver EROD
liver CyplA2
EROD
4OH-AA
plasma retinoi
liver T4UGT

10% relative
effect dose

41.31
5.56

52.46
1.69

12.37
2.22

257.63
306.37

1.08
0.10
0.27
4,5 i

26.94
1.78

Extra effect of
10% Rel. effect

7.82%
0.30%
7.19%
0.!3%
0.24%
0.23%
2.15%
0.62%
0.26%
2.47%
0.19%
4.25%
9.34%
1.19%

• Doses are in equivalent ng/kg body wt (single dose) or ng/kg body wt/day (multiple doses).
'Dose regime: period of dose administration, length of time until sacrifice.

l!
11*•.

Fig. 2. Extra effect levels obtained for nominal 10% relative effect
for studies in Table II.

This is illustrated in Fig. 3a and b. In Fig. 3a, the
10% relative effect and 10% extra effect are fairly close
on the dose-response curve. However, in.Fig. 3b, the
10% relative effect benchmark dose occurs at a much
smaller dose and lower on the curve. In fact, as occurs
with many cases, the benchmark dose occurs in the very,
very small dose range; there are no dose group data
points between the BMD and the control group point

(i.e., it is a "low-dose extrapolation"). Recalling the
earlier discussion about selection of the BMR, the evi-
dence suggests that the 10% relative effect may not place
the BMD in the region that has been characterized as
desirable by some proponents of benchmark dose.

Some may try to argue that the size of the background
level is not really arbitrary and can reasonably be expected
to track with the sensitivity of the scsle of the measured
quantity. Figure 4 shows that the log of the response range
increases linearly with the log of the background response
level. Note however, that the relationship is not linear in
the original scale of the background and total response
range, which would be required in order for standardization
by a simple division to be effective. Also, there is consid-
erable noise even in the log-log relationship. Hence, di-
viding by background rather than range gives different
results than dividing by response range in general, and they
do not track each other very well.

The usual discussions in the literature about models
address the fact that it is the low end of the dose range
that is of interest in toxicology for the purposes of reg-
ulation. We propose nothing here that runs counter to
that inescapable reality. Our point in this section is that
increments in response due to increments of dose (at any
part of flic dose range) should be judged in severity ac-
cording to the scale of full range of possible adverse
response, rather than according to the relative scale of
the background level of response. This is because, as we
have shown, the background response level can have a
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quite arbitrary relationship to the severity of the adverse
response, whereas the size of the response range from
background to maximum possible response should rea-
sonably be expected to provide a meaningful scale for
the observed effects.

4. A BENCHMARK DOSE POINT ESTIMATE
BASED ON EXTRA RISK

Considering the issues discussed in Sect. 3, a sug-
gested improvement over the currently denned bench-
mark dose method is to use the effective dose that results
in a specified percent change in the extra effect. That is,
the point estimate of the p X 100% benchmark dose is
the dose dp which satisfies:

P - (5)

where b = F,(0) is the background response and v =
Fmix — F9(0) is the range of response (e.g., from back-
ground to maximum response for an increasing dose-
response relationship). Note that this same definition ap-
plies to the case of quantal data as well as the case for
continuous data.

The point estimates of effective dose for 5% extra
effect are compared to those of 5% relative effect in
Table III. Sometimes they agree well, but often the
quantities are radically different. Where they are similar
is where the background response b = Fe(0) happens to
be close to the value of the total response range v =
Fnn - Fe(0); that this should be the case is evident from
examining Eqs. (2), (3), and (5).

We argue that the shape of the dose-response curve
is crucial to the determination of the importance of an
effect and the consequent characterization of risk/30' As
seen in Table III, the extra effect doses always have a
fixed relationship to the dose-response characteristics as
indicated by the fitted model parameters [using the Hill
equation Ft(d) = b + v&Kk* + d"); see Appendix]. By
the Hill equation, the reciprocal of the log of the ratio
of the dose to k should be linearly related to the expo-
nent parameter n. Figure 5 shows this relationship using

. the benchmark dose point estimate (5% effective dose).
Since k and n characterize the shape of the dose-
response curve for the Hill equation, it is hoped that the
benchmark dose statistic used would consistently reflect
the characteristic of the dose-response relationship. The
extra effect benchmark dose statistic (normalization of
effect by the response range) shows a consistent rela-
tionship among BMD, the k parameter and the n param-

Fig. 3. 10% Relative effect point (lower pt.) and 10% Extra effect
point (upper) on Hill equation fitted curve, (a) Liver P450 response to
dioxin (Abraham et al., 1988).(H) (b) Liver T4UGT response to dioxin
(Van Birgelen et al., 1995a).<">

eter. Due to the fact that a fixed percentage in terms of
relative effect actually varies considerably in terms of
extra effect (as shown above), the effective dose (bench-
mark dose) obtained from relative effect does not have
a fixed relationship to the shape of the dose curve. Fig-
ure 5 shows an erratic and unpredictable relationship be-
tween the characteristic dose-response curve and the
relative effect benchmark dose points. It is clear that the
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Fig. 4, Response range plotted against background level, log-Jog scale
(data from the al! the studies in Table II except Mably, I992)."51

definition of BMD for continuous data in terms of re-
sponse relative to background is not consistently related
to dose-response, and therefore cannot give a consistent
characterization of health risk.

Since the benchmark dose obtained using extra ef-
fect has a fixed relationship to the estimated dose-re-
sponse pattern, the specified benchmark response level
can be chosen so that the BMD always falls at a place
on the dose-response curve wl.-sre a characteristic non-
linearity of interest occurs, such as a region on the doser-
response curve where the response is rapidly increasing
with increased dose.

The advantage of extra effect BMD over the rela-
tive effect BMD is that all continuous data endpoints are
normalized to the same scale; hence, it is truly an indi-
cator of the potency of the toxicant independent of the
natural background level for the measured response and •
independent of the sensitivity of the response to dose
level.

5. SUMMARY AND CONCLUSIONS

. As the benchmark dose methodology gains greater
acceptance and gains momentum toward being adopted
as a risk assessment alternative to the NOAEL/LOAEL
approach, it is important to provide a critical assessment
of its strengths arid weaknesses, which is the objective
of this report. It is certainly an advantage to use a model-

based method in order to use more of the information in
the data. However, the key information in dose-response
modeling is in the nonlinear characteristic behavior of a
toxicant for particular endpoints. The procedure used to
extract a dose level to be -employed in standard setting
should reflect this curvature.

Several aspects of the current benchmark dose pro-
cedure described in the literature interfere with its suc-
cessfully characterizing the dose-response relationship.
First, the benchmark response level might be chosen on
a locally linear region, which does result in the osten-
sibly desirable "model insensitivity," but as we have
shown, it also results in a characteristic dose statistic that
conveys little information about nonlinear dose-re-
sponse behavior, thus obviating the supposed advantage
of fitting a model to the data. We argue that the bench-
mark response level should be chosen to pick up infor-
mation about dose-response behavior at a characteristic
nonlinear region of the curve to truly take advantage of
the information provided by fitting a model to the data.

Second,, the use of the lower confidence bound es-
timate rather than a point estimate leads to a character-
istic dose that reflects more the lack of information in
typical studies than it does the trend information that is
available in the data. We have shown that for the con-
tinuous-data endpoints of TCDD analyzed in this study,
the lower confidence bound can vary widely according
to the precision of the study and that the use of the lower
confidence would lead to a dose standard at or near zero
in many cases. The results show that a standard based
solely on the lower confidence oound would have a
greater dependence on the precision of available studies
than on measured dose-response, again obviating any
advantage to performing dose-response modeling.

Third, we have shown that for continuous data end-
points, most methods for standardizing the response scale
for defining excess effect can result in BMDs which are
not comparable. In particular, the results show that the
widely-used method of scaling by background level yields
widely differing scale sensitivities. Using the background
response level to scale change in effect produces a BMD
that depends on whatever happens to be the natural back-
ground response level (which can be different among end-
points or experimental conditions even when the
mechanism of toxicity is similar). We have demonstrated
with analysis of data that this relative effect BMD does
not track with the extra effect BMD with scaling based
on the range of response from background to maximum.
We argue that extra effect scales the severity of adverse
effect better and show that it tracks better with model
parameters indicating dose-response behavior.
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Table HI. Comparison of Relative Effect BMD to Extra Effect BMD for Noncancer Endpoints of TCDD Exposure (Doses are in ng/kg Body
wt. or ng/kg Body wt./day for multiple dose regimes)"

Study description

Kitchin and Woods, 1979l)'>
r.,irH S-D rats

-• ..• »' a!., 1988'"'
; i'j,, ''j Wistir rats
Narasimhan et a!., 1994'"'

female B6C3F1 mice

Davis and Safe 1988<M>
C57BL/6N mice

Mably et a!., 1992<">
preg: female, male offspring,
Holtman S-D rats

DeVito et al., 1992""
female B6C3F1 mice

VanBirgelen et al. 1995'"'
female S-D rats

VanBirgelen et al. 1995°«>
female S-D rats

Maronpot et al., 1993""
female S-D rats

Tritscher et al., 1993<">
female S-D rats

Dose
regime*

Single,
3 days
Single,
7 days
Single,
1 day

S, 4 days
S, 4 days

Single

5x/wk
13 wk
daily
13 wk

daily
13 wk
1X/2 wk
30 wk

lx/2wk
30 wk '

Endpoint

liver cytochrome P-450
liver benzopyrene hydroxalase
i- - ..yti-chron-- P-450
.iv .::<.OD
liver EROD

• liver CyplAl
liver CyplA2
Tola! Ah receptor binding
Spleen PFC/106 cells
Spleen PFC/106. cells

Sperm morph. — day 120
Fertility index
Cauda sperm count — day 63
Cauda sperm count — day 120
Cauda sperm count/g — day 120
DSP/g— day 49
DSP/g— day 63
DSP/g— day 120
liver EROD
liver CyplA2
EROD • !
4OH-AA
hepatic retinol
hepatic retinyl-palmitate
plasma retinol
plasma TT4
plasma FT4
liver T4UGT

Alk. Phos. (DEN)
Alk. Phos. (SAL)
ALT
Triglycerides
S. DeH. (DEN)
S. DeH. (SAL)
Liver labeling index

' Max. EOF receptor
Avg. Cone 1A2
Mean focal volume

5% relative
effect BMD

10.31
3.34

18.94
0.83
6.04
1.11

214.83
255.66
25.56

320.34 .

148.76
379.33

2.94
6.79

15.27
1.33

21.31
28.19
0.65
0.04
0.16
3.25
0.09

227.16
21.54
19.06
27.46
0.84

16.61
30.54
0.07

14.36
0.26

31.15
28.59
6,14
0.014

29.11

5% extra
effect BMD

16.75
44.76
30.64
73.04

298.77
51.36

322.62
534.21

22.68
305.75

121.89
350.53

2.02
3.49
6.56

13.84
0.16
6.95

10.00
0.27
3.99
4.87 '
0.09

224.63
22.02
96.63
24.88

8.73

17.26
, 28.20

0.09
8.70
4.12

28.12
30.77
4.50
2.90

29.52

• Doses are in equivalent ng/kg body wt. (single dose) or ng/kg body wt/day (multiple doses).
6 Dose regime: period of dose administration, length of time until sacrifice.

We put forward that the benchmark dose method-
ology could be a sound one, for both quantal and con-
tinuous data, if it is denned as a point estimate
(accompanied by confidence limits to indicate the qual-
ity of the estimate) and put in terms of extra effect. This
proposed modification of the benchmark dose method
has several key advantages. Not using a lower confi-
dence bound to determine the characteristic dose avoids

the arbitrary dependence of a dose standard on the pre-
cision of studies and the possibly absurd result of zero
dose. Defining in terms of extra effect for continuous
data puts the scale on a basis similar to that of the pro-
portional scale for quantal incidence data cases. Using
this method, the benchmark response level can be con-
sistently defined and applied so that it falls in the region
in the dose-response curve where important (potentially
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Fig. 5. Relationship between BMD/* and n. (data from studies in
Table II having a single dose or daily dose regimen).

biologically important) dose-response behavior occurs
that characterizes the behavior of the toxicant. We have
also shown that the BMD defined in terms of extra effect
has a consistent relationship with model parameters
characterizing dose-response shape.

APPENDIX: CALCULATION METHODS

Al. Fitting the Models to the Data

Nonlinear regression of response on dose was per-
formed on noncancer endpoints using the NLIN proce-
dure of SAS/STAT 6.10. Least squares estimates were
obtained using the Marquardt method.(4I) In each data
set, a continuous response is expressed in the original
units. An intercept term was included in all models to
estimate the response level at zero administered dose
(background level).

Depending on the availability of the data, the re-
gression analyses used the raw data (with a data point
for each animal in the study), or the mean of each dose
group weighted by the inverse of the standard error, or
simply the unweighted means. In some cases, analyses
were not reported if there were no trend discernible by
examining a plot of the data. Some datasets were ex-
cluded because noisy data in combination with a trend

having a very small slope resulted in fitting noise rather
than trend. In practice, five or more dose levels (includ-
ing control group) were needed to yield reasonable fits.

For continuous dose-response data of this type, the
Michaelis-Menten model or the Hill equation model are
typically used. For endpoints which are biochemical
markers of dioxin activity, there is some mechanistic jus-
tification of these models in terms of dioxin binding to
a limited supply of cell Ah receptors. The H;ll equation
model is chosen here te model the dose-sv ponse rela-
tionship because it is more general and can riexibly cap-
ture the steepness of the dose-response shape with its
exponent parameter. The Hill equation model with an
intercept is given as:

E(y) =

E(y) = b-

vd"
k" + d?

vd"
k" + d*

(for increasing D-R curve)

(for decreasing D-R curve)

where y is the response, E(y) is the expected value of
the response, d is the dose level, b is the intercept term
(estimates the background response), n is the Hill ex-
ponent and is called the shape parameter because it char-
acterizes the curvature of the dose-response, v is the
maximum response above background ("?[„»" of the
Hill equation), and k is a characteristic quantity that can
be interpreted as the dose at which the response is half
the maximum response above background (the K# Hill
coefficient).

For the Hill model, the. relative effect benchmark
dose is given by:

d* =
bp

For the Hill equation model, the extra effect bench-
mark dose is given by:

Note that for extra effect definition of benchmark
dose, BMD depends only on the dose-response curve
shape parameter n (which is a dimensionless, scaleless
parameter) and k, which is units of dose and acts as a
location parameter that fixes the location of the curve.

A2. Computing Confidence Intervals for
Benchmark Dose

Constrained optimization was used to find maxi-
mum and minimum dose d satisfying equations
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= F. (d) - F8 (0)
P F^-F* (0)

(Al)

(A2)
for all 11.1 ouation paramr '••;>. on the confidence sur-
face determined by sums of s^iaies satisfying a 95% F
statistic (with degrees of freedom according to the num-
ber of data points in the study and number of model
parameters), where

5(9)
9 =
9*

N —
dfm

dfe =

vector of model parameters
maximum likelihood estimate (MLE) of the

model parameters
number of observations
= degrees of freedom for the model (number
of model parameters)

degrees of freedom for the errors (N — dfm)
= observed response at fth experimental dose

d,
= response predicted by the model at dose

d using parameters 9

The optimization algorithm used is FORTRAN
IMSL routine NCONF, which is based on Schitt-
kowski's NLPQL algorithm;(42> it uses a successive
quadratic programming method to solve a nonlinear pro-
gramming problem. The parameter space is restricted to
nonnegative parameter values (nonzero for k and ri)\ to
avoid the numerical difficulties of limited precision, an
upper limited of 15 times greater than the parameter
point estimates is also imposed. Initial values for the
optimization routine are obtained using a grid search.
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